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ABSTRACT

Dyeon has shown that the evaluation of the Sematyrizx for
quantum eleotrodynamice can be reduced o the problem of evele
uating certain quantities, 8'F, D'¥ ana . ., By meking use
of a formula relating the Teproduct of an operator with 1its
corresponding R-product, integro=~iifferential eauations for
s'F gnd D'F are obtalned. Thesc equations are identical in
form with those given by Schwinger for his Oreen's~functions
and hence it is ooncluded that the two formalicms are equivalent,
In addition it 1is shown that all of the quantities introduced
by Schwinger can be expressed in terms of a single quantity,
Syags the vacuum cxpectation value of the Sematrix. The roe-

norgalization problem is not discuesed,



X. INTRODUCTICUN AUD HEVIEW

In a recent workl, Schwinger has proposed a theory of
Green's functiona which appears to be applicable to many of the
problems of quantum electrodynamics and similar theories. However,
since his theory is based on his own formall @ of quantized rieldez,
it 1s not inmediately evident which connection exists between his
results and those of convenilional fleld theorleaa. It is with
this relationship that the present paper will deal. Spocifically
we will ehow how the resulte of Schwinger's theory can be derived
fronm Dyson'se theory3 of the S-matrlxé. It is hoped that such a
demonstration will servs two purposes; first, to make Schwinger'e
results readily avallable in terms of an already familiar formalism,
and second, to afford ¢ set of rules whereby one may calculate
directly from S-matrix theory the varlous Green's~functions introduced
by Schwinger.

In the work to follow, we shail make use of many of the
results of S-matrix theory and hence, for the sake of convenlence,
we will conclude this section by enumerating them. In the
interaction representation, the state vector ‘; "] of the
system, consisting of electromagnetioc and electron=positron flelds
in interaction, satisfiea the equation

éSWM
&a(r)

= K(0Y[o)

ga. Schwinger, Proc. N.A.8. 37, 462 (1951).
£ J. Sohwinger, Phys. Rev. 82, 914 (1951).
For an oxoelient summary and bibliography, see F. J. Dyson, Phys.
Rev. ;f 466 and 1736 (1949).
4 por an altornate treatment see R. Utiyama, S. Sunakawa and
T. Imamura, Prog. Theor. Phys. 8, 77 (1952),



where¢ { <« ) 18 the interaction Hamiltonian density 42 given byd
JC(x) = - Au (&){J',‘.(x) *rJ'“ (x)}
Here Ju(x) i1s the field ourrent, waich for convenience we write as
Jnx) 2 028 (Yulx Ypx) = s (x) Yo (x))

whereas J,(x) is some arbitrarily given external current®,

In what follows, we will be mainly interested in that operatvor
8, the "eo-called" S~matrix, which transforms a state of the system
&t € =200, into the corresponding state at t = +x . Feynman"

has shown that S can be written in the form
S = T [exp{-i fatfPxFc(n)}] = T[d] (1)

The T-product appearing in kq. (1) and rirst introduced by wicke
is defined by:

T(Uv-Z) = §p XY - W (2)
the faotors U, V, ,.. being arranged in chronological order in the
ordinary product on the right. By chronological order, we mean

that if two operators in the T-product of Eq. (2) correspond to

points separateu by either a time-like or a zero interval, then

in the ordinary product, that operator operates first which corresponds
to the oarlier time. The sign factor &p is the signature, t 1,

of the permutation (between left-hand side and right-hand side of

Eq. (2) of the electron-positron gurators only.

® Throughout this paver we shall employ Schwingers notation and
use units where f=1,6 c=1 °
€ The interaction Hamiltonian employed here differs from that em-
ployed by Sohwinger in that we dispense with the external
spinor fields 7 (x) and % (x). Since these quantities were
introduced Schwinger as a mathematical convenience and
are eventually set equal to zero, the results obtained here
will be equivalent to those obtalned by Schwinger.
K. ¥, Feynman, Phys. Rev, ?f (1951), 108,
6. C. Wiok, rhys. Rev, 80 (1960), 288,



Il., THi OHDLRING OFLRATORS
Several methods®s7:8 have been given for actually evaluating
the matrix elements of a T-produot such as apvear in Eq. (1). All
of these methode essentially involve the transformation of the Te
product into an Neproduct, where the Ne-product is defined by:

N(uv-z) = §pXY- "W
the ordinary product on the right containing the same faotors U,

V, «.. ordered in such a manner that all oreation operators stand
to the left of all deetruction operators. In this form, the matrix

elements of any T-product can be readily calculated. In this seo=

tion we wil. derive the fundamental expression (7.1), giving the
relation between an arditrary T-product of electromagnetic and
electron-positron field operators and its corresovonding N-product.
We shall treat firot the case of a T-product which 18 a
funotionsl only of the electromagnetic field operator A.(x). 1In
order to introduce oreation and destruction operators into the

theory, we decompose A.(x) into two parts according to

Au(x) = Al (x)+ A (x)

where A;.(x) contains only photon destruction operators, while A,(x)
oontains only photon oreation operators. These auxiliary flelde
satliefy the following commutation relations:

[AA: (x), Av(l')] T2 SA«V[’); (x-x°)- D,{ (K'K')]
LAn (x), Av(x2]) = ¢ 50 [ DA (x-x)- D (x-x)] (3)

(AL (%) A (x9) = [AZ(0, A (] = 0

9 For a detailed disgcussion of thie method of decomposition, see

J. Schwinger, Phys. Rev. 7B (1949), 601.



where the only property of the D functions which we shall need is
that

D;' (n) =0 F_;r X <D (4)
D,f(,.)-.o tor A
and (
. - > 5,
Dr(X) 1 -i i DA (x)+ Dp (X)}
satifies
: (¢)
0 De(x) = 28(x)
With the help of Eq. (3 -6) , we shall now prove the follow-
ing statement: the Noproduct corresponding to a given Teproduct
can be obtained by substituting for every field operator A, (x)
the quantity A', (x) given bwlo
, ) Lk
A, (x) = A“(x)*_(i’x D: (on')m‘) (7)

in the T-product, considered rnow as an ordinary c-number functionsl
of the A,(x), and performing the indiocated differentiaticns. Ths
regsulting expression is then to be oonsidered as an Ne~product, which,

in riif, is equivalent to the original T-product. The statamsnt

10 The funotional derivatives /S Aux) are defined through the
equation
» 5 {

§F (Ha) v TiAutAL) ~ T 2] 2202 AL (x) d4x

RN RS

Strictly speaking this definition is meaningless singe the quanti-

ties ag enrlnﬁ therein are operators which do not commute with
each other, e give meaning to thesuation by assuming that the

§An(x) are o=numbers, When so defined, the funotional derivatives
have the property that

[ﬁ%::y:%:h7]‘=c
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18 of course triv'ally true when the T~product to Le reordercd ie
Juet Ay (x) iteelf. To pnrove 1t for the more general case, let
us proceed by assuming that it is true for eome Teproduct, 7T [.r'/ﬂp)],

i.e., that

T{F(A] = N[F(AL)] ‘@

Then, if we can prove it for T \:A“(x) 3'(9«)] , We can gonolude, by
induotion, that the above mentioned statement is indeed velld.
This last assertion follows from the fact that every operator
functional can be expreccsd a&s & functional rower saries in the

A x}. To proceed with the proof, 16t us agsume that the value of
X lies esomewhere betwoon the times to whiceh the operators in

F(A) correspornd, We exprese this by She cguation
T[Autx) F(A)] = X(A) Autx) Y(A)

or equivalently, by

T (A F(A)] = X (A [ Az 0 +AL (] Y(A) (9)

where
X(A)Y(R) = F(A)

In order to convert Eq. (39 ) into an N-product we nust commute
A", (x) through X end a%. (x) through Y. Thie can be done by meking
uge of the commutation relations (3) and ylelds

T [AA(,‘) ‘}'(,q)] z A;»(X)XY + {-i]dﬁx‘ D;(K‘K')‘;;;(” X} Y

+ XY AL (x) + X {-ifd‘*x Dg (x-x’)jé;(x‘) \,/}

However, becaugse of the nature of D, (x) and Di(x) and because
all times in Y precede X which in turn preceeds all times in X,

we can rewrite this equation as



~
Bl D6 BN

T[Ap(x)?(A)] 2 AuxiXY r Xy AL (x)

/J‘ )

Utk Do (x-x) 5= = Py B

{ j ‘x"Da (x “A' , zjaL"x Og (kx)AS'A,:(x’j?xY
Upon substitution from Eq. (8 ) into Eq. (/0) we obtain

T LA F(A] 2 Al () N[F(a9]r N[FA] AL

i JJ& D,q (x- XI) ‘ﬁ o quK DQ (x- X)jjé‘: } [?(A')J

Sinoe now the quantities A7 (x) and A'.(x) appear in F(A) only
in the combination A, (x)+ A%, (x), we note that

di»( N[F(a] = N[ﬁ?(m ]

JAM(‘)
and
L S F(A)
‘S'A‘:(” :(A) [J‘Au.(x) ]
11

Therefore, Eq. (X J becomes
T [Aweo FA) = N[ AL 0+ AL (0} F(AY)

. VTt , - , & F(A)
"Zj:l“" [DR (x=x') + Dy (x-x )] N[/__———‘QA,“(K) ]
Finally, remembering the definition of Dp(x), we have

T [Aw 0 F(A] = N[{Au i+ [dx Ds (- x),rq — ¥ (A)]

= N [A/.u)?(f-\')]

which was to be proved.

We can reformulate this result by noting that Eq. (7 ) can be

rewritten in the forn

A x) = €8 Antye™®

(10)

(11)



where

= ‘— ( 4, 14,/ v D_ oyt & Aﬂ
Z_Jd Adx’ Euv Dr (x ”JAMM S (12)

as can readily dbe verified by direct caloulation. Therefore, if
T[FA] = N[Fa]

then 1t 18 also true that
T(FA)] = N[e? F(Aare?)

In particular, if wve are interested only in the matrix eclements of

Tf?(m-j we oan disregard the factor ¢ ¢ , sinoce there is nothing
for it to operate on, and writs finally

(T = {N[e?Fn]) (1)
In what follows, we shall refer to A a3 the photon ordering operator.
We can &lso derive an expression for an electron-pcgiiron

ordering operator., In order to do so we muat decompose the eleciron-
positron operator according to

VX = wix) e Un)

Yixyz Ui+ vx)
where u (u = u's ) destroys (creates) elsctrons, and v (vz=£8 v')
destroys (creates) poeitrone‘u. For our purposes, we shall neced
the following table of anticommutators:

{ua(® Zg(p] = -1 | Sy (29 =-S5 (2-9)]

{1.7/4 (4), Vu (l)} = -2 {5,2;(211) - Sf;;(?-g)?

with all other possible anticommutatore vanishing. The Feynman
xernal funotion 8%,s (x) is defined as

1l we represent the positrons by "negative-energy® electron wave
functions and not by the charge-conjugate funotions,



.. 8(»

S:P(K)S-?:{S,::(x)a»S:};(n)} (14)

and satisfies

LS (o0 S,,,m:zsusa (15)

where
L'f,s(x) e (-2 YuP 5/3%u + 6% m) (16)

We can, in complete analogy with the method used to arrive
at g, ( 7'), derive a similar set of expressions for the eleciron=
positron operators. We will not repeat the details of the vroof,
but esimply assert that for any functional J¢ (¥, %)

Tldetw. 7)1 = N[x (41 5]

where

30-'(*)='¢.(x)-f5f,(x.xf) J'__ dtx (/170
A Yr (x)

Vil 60 2 Ty () [ty (170)

g S8 (xx)

Now, however, due to the fact that the electiron~positron operatora
anti-commute with each other, we must give 2 @lightly different
meaning to the functional derivative ae employed in Eqs., (/7a%h ),
A moments oonsideration shows that the correot definition is given

by the following:

28 o . [ i}
{JV’U“) ‘%(x }. 4 i‘ﬁ;(”‘ w“ (X')} -

{ﬁ:w‘ Yalx)] = Sugg 60X ;

{ﬁf(x) ! iﬁ(x')} = b &(x-x")
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from which it imuedliately follows that
(e 1o
S W (x) Jﬁo\')
As before, we can introduce an ordering operator . defined by

Z‘fd‘xd’x'-i- B (x-x’ !
S Y (4) Swax ) et 8
and write, in place of Eqs. ( .:°=.J),
I7a,b
) T .z

Yu(x)= € Yuixse (19a)
and

- ) -

Vax) =€ ppme® (19 b)
Hence,

" - z - _-X
Tlx(ve))sN[e“K(wgie "]
and again, if we are interested only in the natrix elements of
J(¢.¥) we can write

(T [ 2)]> = N[eTX(wi)]) (20)

Upon combining the results contained in Eqs. (/3), (20}, which we
can do since the two fields commute, we obtain the equation linke
ing a given Teproduct to its corresponding N-produoct, namely12

CTL5CA %8> ={N[e?elg (A, w¥)]D (21)
As we shall ses later on, this result will greatly simplify our

work in treating the various Green'!s-functions to be introduced,

In passing, it 1s interesting to note that it ia possible
to derive from kEq. (1), the more conventional rules for the

12
8, Hori, Prog. Theor. Phys., 7, 678 (1962) has obtained a
similar tgmula but g%ly' or the special case where §
is the S-matrix itself. We have developed Eq. (21) since we
will need it to treat more general forms of & .
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transformation of a T-product into ite corresponding N-product®,
For the sake of eimpliocity, we will carry out the demonstration
only for the eleotromagnetic field, and leave the case of the
electron-positron field to the interested recader, We shall first
state the rules whereby the transformation can be effected. In
any T=product of the A, (x) we pilok out a certain even number of
faotors, either none or all or any intermediate number, and
associate them together in pairs. Ve replace each pair of faotors
Au(x), Av(y) by &uv DF(x = y) and multiply the rssult by the
resalning factors of the T-produot arranged in a normal order. Fror
instance, in the T-product T[A,. (x7) Av(xp) A, (x3) Az (14)] o

the possible results for such factor-pairings are given below:
N[Au(x.) Ay (xy) Az(KJ)At(IQJ}I

Euv D (x,-x3)N [Ar(x2) Ac(x0)], §um D (x,23) N [Av (x0)Ax (a1, -,
, F
Suv D:(X."‘t)b,\t D(Xs-xq), Sum OF (x,-X3) S DF(&‘&),

W ick has then shown that & given Teproduct is equal to the sum
of the results of all such faotor pairings, i.0., for she example
given, the T-product is equal to the sum of all the sxpressions
in the above table,

In order to show that Eq. (2/) 1s equivalent to these rul 23
we neod aerely to expand QA in a pover series, The first term
in the expansion 18 Just unity and hence we simply arrenge all
of the faotors A ,(x) appearing in § in a normal oxder: for thie
first term we make no factorepairings. The next term in the exe
pansion i just & . Because of the nature of the funotional
derivatives, the net effeot of operating with it on § 1s %o plok
ous, in all possible ways, two factors Au(x) and Ay (y) and insert



in their place Suv DF(x - y). Upon rearranging the remaining
faotors in a normal order, as the equation tells us to do, we
obtain the ume of all the results of x single factor-palrings
mentioned sbove, In a simllar manner we sve that the third tera
in the exvansion will give us the sum of the results obtained by
making 41l possidle pairings involving four factors A.(x), and
80 on. The factirials compensate for the fact that in the nth

t <sra of the expansion each partiocular pairing occurs n! times.
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III. THE ONE ELBEUTiw: 2RI UNEQLFUNCTION

In dealing with Eq. (21), %t is often convenient to employ
the so=called Feynman graphs., The Feynman graph for a particular
ters in the expansion of the right hand side of kq. (2! ) can be
drawn ag follows: For every faotor Dr(xi = %3') 2 dotted (photon)
line 18 drawn oonnecting the points x; and xy' ; for every faotor
Spup (x§ = xJ') a directed (electron, positron) line is drawn from
Xy to X4' ; for the factors Ve (xg), Vs (xx') directed lines
are drawn leading out from xx to the edge of vhe diagrem, and in
from the edge of the dlagram to xx'; for every factor A u(xy) a
iine 1s drawn connecting the edge of the diagram with X1, As
sometimes happens, graphe corresponding to two different terms
in the expaneion of Eq. (21) Aiffer from each other by only one
or more self-energy parts. In Fig. (I) we have an example of cuch
& situation. Here the single line connecting the points x and x'
in one greph is replaced, in the other graph, by a subgraph which
18 unconneoted to the reet of the diagram except by two lines
running from 1t to x and x'., Orephs which oontain gelf-energy
portions are termed "reducible® graphs and alwaye correspond to
some particular®irreducible® or *prix tive® graph., A partiocular
line in a primitive graph, which has as its oounterpart in the
assoclated reducible graph, a self-~energy subgraph, will be deoe
noted as & ) -line. Dyson hae shown® that the sum of all of the
term in Eq. (.1) which correspond to a given primitive graph,
pPlus all of its assooclated reducible graphs, can de reduced to a
single tera to de associated with the primitive graph. This term
is obtained in the following manner: In the term assooiated with



.

12-A

Scattering of electron by electron in 2nd and Lth orders.
is a ) ~line

The photon
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the primitive graph we replace each factor BFu«g (x - x') or pF(x - x')

as the case ncy be, which corresponds to a A eline by the new
faotors G.5 (x x'), Guv(x x') respeotively. Substitutions
must also be :de for external ) -lines but for our purposes we
need not consider thes, These new factors are given by

Gug (x,x) =T ['V-;‘(K‘/%(K)JJ>° S

HKuw (2.x) = (T [An(x) Av(x24)) So..

where the subsoriot o indicates that we are to take the vacuum
expectation value of the quantity appearing between the brackets
and vhere £ is defined through Eq. (1), Sygq 18 Just the
vacuum expectation value of the S-matrix.

In tids section we shall derive a oclosed-form expression for
6.5 (x, x') in terms of Syag, the vacuum expectation value of the
S8-matrix and at the same time derive the differential equation
satisfied by G. As we shall see, this equation will be identical
with the one given by Schwinger for his one electron Oreen's
function and hence we will be able to consclude that Schwinger's
G 18 identical to the one defined in Eq. (22), With this faot in
mind, we can also call our G the one eleotron Green's furotion.

In order to investigate the properties of G, let us apply the
results of Eq. (21) so Eq. (22), We have then that

Gaa (x.x) = (N (€2 € Walx) Yutx) 81D, 5.0,

(22)

(23)

(24)
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In the lnveatigation of such quantities as apvear in the righte
hand side of Eq. (24) it is convenient to know the commutation

properties of 2 with respeot to %, (x) and 1;7,5 (x'). By combining

the results of Eqe. (/74b; /9« b ) we obtain Airectly that

z I F S z
[e ) ’Pu (l)] - fdJ Sgc (X’SL;‘%_(J) e

T - - ] F T »Uq Zz
[e, 3"3(’")]‘ [oua Soa (g-x)me

<
Let ue now use Eq. (25b) to interchange the positions of € and

7-’-/3“') ¥Ya(x) An Eq. (24). The net effeot of this interchange 1s
eimply that

Gop (x-x) = S (x-x°) ‘fdgd‘g' Ser (x-9)S f5 (y'=x") =

&
(N[ £ g Fgg et 4ln s

Because of the form of 2. , we also have that
A}/h Sw\.(. ‘5‘

7 xS
,J.S,oc-(g J) JS”(:’ -y) <N e 81)’ S
s(N[E— Z— e%eTg] ) sl

Snty) B Fgy)
Direct substitution of Eq. (27) into Eq. (26) then yiolds

") o F ' 41 o F Aﬂ’n Swac
Gup () = Sl -n) + f[a g Sue () S gy 8 (4

Thus we see that the one=electron Green's-function can be ex-

pressed entirely in terms of the single quantity 8,,,.

(252)

(25 b)

(26)

(27)
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At this point a word should be eald concerning Bv“. In Eq.
(27) we have treated Syac 88 though it were a functional of sF (x).
Actually, eince SF 1e a specified function of 1to arguments, By,
is just a number. Stristly speaking then, the funotional derivative
of 8,., Wwith respeot to sf(x) hao no meaning. However, we can
give it meaning Af we consider 87(x), and also DF(x), to be arble
trary funotione of their arguments. It is only after we ocarry
out the preeoribed operations on svao that they assume their
actual funciional dependence.

Although we have obtained an expression for the one-electron
Oreen's-funotion, in terms of By,,, it is sometimes convenient
to know the differential equation satiasfied by G s . We can derive
this equation by again making use of Eq. (24). It will prove
convenient however, to interchange the order of Y%.(¥ and /(x)and
write

Gus (xx) = = SN [€9€F 00 g 0 81, S50

T
Let us nov somaute € through %, (x) . Refering %0 Eq. (25a),
we see that the result is

Gug (x,x") = N Ud.‘a sk, (x-d)j&y-;"d) e“et Y (x).81D, Sunc (2.9)

(The term which oontaine the factor % (x) setanding to the left of
et vanishes since we are taking the vaouum expectation value of
the entire expression,) Now, since the functional derivative

Sl W,(g) commutes with €% , W8 can perform the indicated dife
ferentiation in Eq. (29) and so obtain
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Gua (x.x') = Sly (x-x) = [d*y SE (x-g) (N {1e e%eZ »

*¥e Vs () Yo (y) Anly)B] ), Suil (30)

Let us now make use of the fast that

S8 :
Lo =3 A
5t t Auly)d

to rewrite Eq. (30) in the form
. . F 3 AL,
G (x,X) = S:p(x-x ) *€[d‘g S,p(x-g)m) {N[@ €” Y (%) Yely)«
«$1, ) vee S (31)

Now substitute the result of Eq. (28) into the bracketed part of

Eq. (31), and obtain . 2
Gug (x,x) = S5y (eex’) + €[ A%y S (*-a)dfem {SaFv (x"-y)Svac +

1 cF ‘;5«.; ’ =
*fquzab'z Sea (A-Z)mzl) st (z 'd)} Svac

wvhich bocomes,~arter a slight rearrangement of terms
Gep (x,x') = § 8 (x,x*) -e{d‘a Sfp (x-y) 5% S:p (y-x') HlnSvac

f 4 5 ff 4 r d‘"}‘r"‘(ﬂ) Dns
~efd*y SE (xeg) 2 [(d2d'2' SEe (4-2) SloSvas oF (o, BlnSwe
- cvld 4}5;‘:;(2-“2-') SAQ(Z KL}_T,‘(:)
-e[dtygSE (x-g) ¥ ([d°24%2' S (y-2) P1In Svac .
f ’ ”ﬁ JS&(;-:’)JJLQ)SM(Z )

This result ocan then be expressed in terme of G« &8

Gup (x,x') = Sfs(x-x)- efd.‘d Sho(x-g)Grg(ysx) ¥ Bln Svac
«3Tuly)

~efdty S5 (x-g)0 % £ Gaa (g x) 32)
f g ~“wp g/ 7. (5) (
In order to remain as close to Schwinger's notation as possible,

we shall introduce at this point a quantity {Au(x)) defined by




(Au0) = =§ Zln Se
/’jﬂu(“)

In terms of \"Am)' Zue 172) then becomes
Gua(x,x') » SFy (x-x') ~iefd‘a S3s (x-3) Gos (3,%) ¥ pc <AM(JJ>

- efd.‘a S:p (x=y) ¥se ;‘f—ﬁffgﬁ (34)

Finally, by applying the differential operator L’; te both sides
of Eq. (34) we obtain, as the differential equation satisfied by
Gus

(L300 - e CALRID U7 G (xx') +ieyss BGea (ux)
B Tu(x)

=28, S§(x-x) (35)

Upon comparing this equation for G.g with the one given by Schwinger,
we see that they are identical and hence we are justified in equat-

ing our Oreen's-funotion with that introduced by Schwinger.
We shall conclude this section with a brief 4iscussion of the

so-galled “mass® operator introduced by Sochwinger. Schwinger
has assumed that the funotional derivative appearing in Eq. (35)
can be repregented by an integral operator, i.e., that

= fd‘a Zu:- ("'y)Gaje(y,x') (36

The mass operator M.s (x, d’ ia then defined thru the equation

Mug(x,y) = m 8ap § (x-g) + Zug (x.y)
As was mentioned above, Eq. (36) 1a an assumption. It can be



Justified however, and we shall do so by deriving an expression
for Z.g (x,y) in terms of 8,,,. Let ue begin Ly rewriting Eq. (28)
in Schwinger's matrix notation. We have that
G =SF+ S KSF (37)

vhere K is an abbreviation for the functional derivative of
1aBy,4 vith respect to 8". Eq. (37) can be solved for sf, giving

sF= (1+sk)"'¢
Substitution of this result back into the second term in the righte
hand side of Eq. (37) then yields
G =SFrSFR(I1+s°K)" G

Now let us compare this equation with Eq. (34), written in matrix
form and in terms of 2 , vis.

G=SF-éeSF(“G(A~.)1~iSFfG (38)
We see immediately that 2 is equivalent to
S = e ¥ (ALY + K(I+5K)™ (33)
From this we can conclude that a & Aocs exist and indeed can be
expressed in terms of Bv“. Afctuelly, the derivation leading to
Eq. (39) rests upon the assumption that (1 + s K)" exists and
is non-singular, However, even if these conditions are not fuliilled

we can still use Eq. (39), at least formally, to express 2 asa

series expansion in s* end X.
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11I. PHOPLRTIES OF <Au(x))

In Schwinger's original work on Green'es-funotions, the idea
was put forth that one might eliminate some of the difficulties
inherent in the S-matrix formaliem by treating Eq. (35) as a

basic equation for Gxg . In other vorde, one need not ccnsider
its antecedents, but attempt to solve it directly for G« . 1In

order to carry out this program consistently, one thesn needs an
equation to determine (A.(x)) . In thie section we shall derive
such an equation, and, although we do not adhere to Schwinger's
program in this paper, we ghall find it useful for other purposes,
From Eq. (33) we seec that

(A/‘ (x)> = <N [e“e'{ﬂ,u(x)zg]z Sv;,c

Upon ocommuting e° through Au(x) we obtain

-

PP - Freogy S
<A,u(x)> = <N[€ e fd’g D (X -a),chM(y)’X]z Svac (40)
By carrying out the indicated functional differentiation, Eq. (40)
runs to

<A»"") ) ifd‘a DF("':‘J){JA (J)+<J#(7)>} (41)
wvhere
<JA(U)> = (T[J'u(ﬁ)‘?])o St (42.)

Eq. (41) can bc put into the form of a differential equation by
operating on it with -2[J to give

D<AM(")> - jM (") - <J,« (X)) (4‘3)
Furthermore, because of the definition of G¢g ,

Ciutn) = eF Cpu (x,x) (44)
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Eq. (43) can be put in the form
D¢A) = - Julx - €82G (x, %) 45)

Hence we can use Eq. (45) together with Eq. (25) to determine both
(Am(x)) and 0 (x,x')13,
Before oconcluding this section, it will be of some interest

to coneider the parsicular caee where Ju. (x)=0. Since originally
J ».(x) was introduced into the theory as a mathematiocal artifice

to enable us to derive Eq. (35), we see that this is the case with
which we shall have to deal in all final applications of the theory.
In cases where differentiation with respect to J. (x) 18 indicated
we must perform the differentiation before we aporoach the limit
of Ju (x) going to zero. Consider now whatimppens to G(x,x') in
the limit, In general G(x,x') is not an invariant funotion of

its arguments under a translation of the coordinate axie since it
depends upon Ju (x). However, in the 1imit G(x,x') must be an
1r:varlant function of 1ts arguments and hence becomes a function

G of the coordinate difference x = x'. ke can therefore conclude
trom kq, (44) that

. (-]
(i), = €8 Glo) 20
since each component of ( Ju(x) ) is now a number quite indepenr
dent of the ocoordinate system. The only veotor having these

properties which is invariant under Lorentz transformations is the
null vector.

13 For a discussion of boundary conditions to be used in connection

with solving these equations, sce ref, I.
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Upon refering back to Eq. (4!) we see then that

<AA(8)>JW =0
In this case then, Eq. (28) becomes simply

o . o o

G =sf+15Fs G
which 418 just the equation given by Dyson for his Oreen's-
function S'° (Eq. (6.3 ), B-Matrix in Quantum Electrodynamics).
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IV, THE ONE=PHOTON ORLLN'S~FUNCTION
in this eection we shall treat some of the propertiee of the
one=photon Green's funotion ae given by kq. (23). Actually, ve
shall follow Sclwinger and define the one-photon Green's=function an

Gur (xx) = T [AuA(x) 4], Soue -

= ALY (Avin) (46)

Fron the rasults of the preceeding seotion it 1g evident that in
the 1imit Ju % 0, G.uv (x,x') 13 equivalent to Auv(x,x'). Keep=-
Ang in o124 now the form of . , we see that Eq. (46) 18 equivalent

to

¢ JIS\!& -
5“? (K’x) S - ~—:—!— ' + 4}/" SW‘ ‘ﬂ/nSV“‘
A’Jh(l)ka.fy(x') vac A9.T“ (%) Agjv (x')

or
‘9 tln SVK‘

STty I Bz

Suv(xx) = = = Gumlxx) (47)

By naking use of Eq. (33), we can then put Eq. (47) into the fomm
Suv (x,x') = -3 '—'—-——-——‘9<AM(”> 48)
,uq Jv (x') (
Le¢s us now take the derivative of both sides of Eq. (4/). By
makxing use of the identity (48) we so obtain
SAv (x,x') = &w DF(X-X') +fol‘a DP(X-J) M

3 Jv(x) (43)

Fina.ly, by operating on Eq. (42) with O we obtain the fundae
sentil equation satisfied by Juv;
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Dsuv (A,X') b 2'5#v6'(x-x‘)+i ;’A%—'::‘(%Z- (50)

Let us examine the lasot term in the rightehand side of Eq., (59).
From £q. (44) ve have that

; J(J'u(&)) . ief“’ & Gpu (x,%°)

(s
ST (x) A 83w

Nov Eq. (43) tells us that Ju (x) is cqual to a term linear in
( A.(x)) plus an additional term. Hene, by the ohain rule of
differentiation, we can rewrite Eq. (51) as

§80u) _ 4o b""’fd‘ BSGoa (2,80 8{As(y))
5T () “ 358 3R (gr) B Twx

If then we define a nev quantity P,.. (z,x') by the equation

J GPI (xlx)
P ( Ay (X))
we can put our fundamental equation (5¢) into a more symtetrical

Puv (x.x) 3 ie ¥3°

(572)

fora, nanely

BT Gaew (0.X°) 2 2 0 §(x-x') + fd.‘a Pir (xy) Gev(y x') (53)

In the particular case where J,=0, Eq. {49) becomes in matrix
notation

o R

Suv = Suv DF =1 D Py Gov

From this expression, we see that 5"¢~ corresponds to Dyson's D'F ’
and ifsm- corresponds to the proper photoneself energy 7" ,
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DISCUSSIUN

In this paper we have demonstrated the equivalence between
the Green's=-functions and assoclated structures such as the mase
oserator introduced by 3chwinger and the modified propagation
functions ocouring in the Sematrix theory. In the course of the
demonstration a curious result apvpeared, namely, that all of the
various quantities introduced by Schwinger could be expressed in
terms of a eingle quantity, Sy,,. This fact suggests a possible
alternate aporoach to investigating the properties of the GCreen'ge
functions. Inetead of examininy each one separately, as 18 now
done, one =ight begin by examining the properties of svae' con~
sldered as a functional of SF, DF, AND Jau. o OSuch a study would
entall, in the first place a knowlecdge of how SVac depends upon
its aryunente. By making use of the results of thls parer it 1sa
possible to derive certain closed form expressions for svac' Une
fortunately, these expressions all involve the Green's=functions
themselves, and hence are of little help at the vresent in
analyzing Sy... Even if we did know the exact functional dee
pendence of svac we would still be very far from our goal. Wwe
would need in addition a mathematical formalism somewhat akin to
analyels as applied %o ordinary functions since, as we have scen,
the Green's~functions all involve functional derivatives of svao
with respect to its arguments. In this respect we can but hope
that the mathematicians will become interested in the problem and
develope for us a theory of functional analysis,

There also exists a second pocelbility which aprears to be

somewhat more manageable. As we have seen, the Green's-functions



attempt to take into account, in one lell swoop as it were, all
of the virtual processes assoclated with a glven real process.
The one«electron Oreen's~function, for example, takes into
account alli of the virtual processes which accompany a free
eleciron in 1ts flight tnrough space. One can take the position,
as Johwinger has done, that since these virtual processes are 1n
prineiple not observable they ought not to ap:ear in the theory.
In other words, one should work solely with the Green's«functions
which are given in terms of some integro-dlfferential equation,
and not worry about their antecodents. The chief drawbaox to
such a scheme 18 that some of the quaniities apnearing in the
integro-differential equations for the Green's~functions, such a3
the mass operator, are themselves extremely com:sl.cated objects
which up to now have besn expressible only as power scries in the
various propagation functions. An approaoh of this tyne has been
attempted by Edwards with eome degree o?f auooessl4.

There does exist a third ap»roach, however, lyihg intermediate
between the two aprroaches outlined above, which we would like
Lo outline briefly. Consider for a moment the situation in which
an electron is scattered by some external fleld. Given its initial
energy and momentum, we wish to know what will be its final
energy and mouentum. In attempting to answer this vroblem from
& theoretical standpointi, one of the first questions which arises
ie how to describe the initial and final states of the electiron.
In the present form of the theory, the electron 1s described
initially and finally by elgenstatee of the free-~field Hamiltonlan,

“b' Hovever, even before it interacts with the external fisld,

14
8. F. Bdwards. Phys. Rev., 90, 284 (1963)
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the electron is in interaction with its own virtial rhoton fleld.
Henoce one should, in describing the initlal and final states of
the eleotron, include the effects of these virtual photons. As

we have seen, our Green'eofunctions include in thelr description
of the electron just these virtual flelds, It apieara reasonable,
therefore, to employ as eigenstates describing the electron, elgen-
states of the operator appearing in the equation for the onee
¢lectiron Oreen's-function. Once one has done this, there exists
the posesibility that the matrix elements of the Sematrix could
then be expressed in some simple manner in terms of thease elgen=
states. The main problem facing the thsory would then be shifted
to that of calculating.these eilgenstates where one would have a
much better chance of separating out the infinitles wnich arise in

the preesent theory.
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